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Tensors, or multi dimensional arrays, are receiving significant attention due to the various types of data 
that can be modeled by them; examples include call graphs (sender, receiver, time), knowledge bases 
(subject, verb, object), 3-dimensional web graphs augmented with anchor texts, to name a few. Scalable 
tensor mining aims to extract important patterns and anomalies from a large amount of tensor data. In 
this paper, we provide an overview of scalable tensor mining. We first present main algorithms for tensor 
mining, and their scalable versions. Next, we describe success stories of using tensors for interesting data 
mining problems including higher order web analysis, knowledge base mining, network traffic analysis, 
citation analysis, and sensor data analysis. Finally, we discuss interesting future research directions for 
scalable tensor mining.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Given a call graph containing who-calls-whom information, 
how can we find patterns and anomalies? How can we find 
groups of closely related (subject, object, verb) triples in a multi-
dimensional knowledge base? How can we find anomalous pack-
ets from network traffic data? Tensors, or multi-dimensional 
arrays, appear in numerous applications: network traffic [1], 
knowledge bases [2–5], hyperlinks and anchor texts in the Web 
graphs [6], sensor streams (time, location, and type) [7], and DBLP 
conference–author–keyword relations [8], to name a few. Analy-
sis of large tensors using scalable tensor mining algorithms is a 
basis for many interesting applications including clustering, trend 
detection, anomaly detection [8], correlation analysis [7], network 
forensic [9], and latent concept discovery [6].

In this paper, we give an overview of scalable mining. We first 
describe algorithms for tensor analysis, and their scalable versions 
using distributed platforms, in Section 2. Next, we introduce suc-
cess stories of using scalable tensor mining for various applications 
including higher order web link analysis, knowledge base analysis, 
network traffic mining, citation (DBLP) analysis, and sensor data 
analysis, in Section 3. The area of scalable tensor mining research 
is fastly growing, and thus there are many research opportunities 
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waiting for us. We discuss several research directions of scalable 
tensor mining in Section 4, and then conclude at Section 5.

2. Algorithms

In this section, we give an overview of tensor mining algorithms 
and their scalable versions.

2.1. Preliminaries

Vectors are denoted by boldface lowercases (e.g. a), matrices 
are denoted by boldface capitals (e.g. A), and the rth row of the 
matrix A is denoted by ar . Tensor is defined as a multi-dimensional 
array. A vector and a matrix are special cases of tensor with 1 and 
2 dimensions, respectively. Each dimension of a tensor is called 
a mode, and an N-mode tensor is denoted by X ∈ R

I1×I2×···×IN . 
A mode-n fiber of a tensor is a vector determined by fixing all 
indexes other than n of the tensor. Matricization is a process of 
transforming a tensor into a matrix; a mode-n matricization of a 
tensor X is denoted by X(n) , and contains the mode-n fibers as 
columns. An n-mode matrix product of a tensor X ∈ R

I1×I2×···×IN

with a matrix A is denoted by X ×n A and is of size I1 × · · · ×
In−1 × J × In+1 × · · · × IN . We refer the reader to [10] for further 
backgrounds on tensor.

2.2. Tensor decomposition

Tensor decomposition aims to decompose a tensor into latent 
factors. We describe two main tensor decomposition methods: 
PARAFAC and Tucker.
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Fig. 1. Rank-R PARAFAC decomposition of a three-way tensor X into three factor 
matrices A, B, and C.

Algorithm 1: ALS for 3-way PARAFAC decomposition.

Require: Tensor X ∈R
I×J×K , rank R , maximum iterations T

Ensure: PARAFAC decomposition λ ∈R
R×1, A ∈R

I×R , B ∈R
J×R , C ∈R

K×R

1: Initialize A,B,C;
2: for t = 1, . . . , T do
3: A ← X(1) (C � B) (CT C ∗ BT B)†;
4: Normalize columns of A (storing norms in vector λ);
5: B ← X(2) (C � A) (CT C ∗ AT A)†;
6: Normalize columns of B (storing norms in vector λ);
7: C ← X(3) (B � A) (BT B ∗ AT A)†;
8: Normalize columns of C (storing norms in vector λ);
9: if convergence criterion is met then

10: break for loop;
11: end if
12: end for
13: return λ,A,B,C;

2.2.1. PARAFAC decomposition
PARAFAC (parallel factors) decomposition [11], or CANDECOMP 

(canonical decomposition), decomposes a tensor into a sum of 
rank-one tensors.

PARAFAC decomposition for 3-way tensor. Let X ∈ R
I× J×K be a 

three-way tensor. The rank-R PARAFAC decomposition factorizes 
the tensor X into 3 factor matrices, A, B, and C, as follows:

X ≈ [A,B,C] =
R∑

r=1

λr(ar ◦ br ◦ cr),

where ◦ denotes an outer product, λr is a constant to make ar , 
br , and cr unit vectors, and A ∈ R

I×R , B ∈ R
J×R , and C ∈ R

K×R

are the factor matrices. Fig. 1 shows the 3-way PARAFAC tensor 
decomposition.

PARAFAC decomposition for N-way tensor. Generalizing the
PARAFAC decomposition for N-way tensor is straightforward. An 
N-way tensor X ∈ R

I1×I2×...×IN is decomposed into R factor ma-
trices using PARAFAC as follows:

X ≈ [A(1),A(2), . . . ,A(N)] =
R∑

r=1

λr(a(1)
r ◦ a(2)

r ◦ . . . ◦ a(N)
r ),

where A(1) ∈ R
I1×R , A(2) ∈ R

I2×R , . . . , A(N) ∈ R
IN ×R are the factor 

matrices.

Algorithm for PARAFAC. A well known algorithm for comput-
ing the PARAFAC decomposition is Alternating Least Square (ALS), 
whose 3-way version is shown in Algorithm 1 [10]. Note that �, ∗, 
and † denote Kronecker product, Hadamard product, and pseudo-
inverse, respectively. The main idea is to alternately minimize each 
factor matrix after fixing all other factors.

2.2.2. Tucker decomposition
In Tucker decomposition [12], which is also called N-mode 

Principal Component Analysis (PCA) or N-mode Singular Value De-
Fig. 2. Tucker decomposition of a three-way tensor X into a core tensor G, and 
three factor matrices A, B, and C.

Algorithm 2: 3-way Tucker-ALS.

Require: Tensor X ∈R
I× J×K , desired core size: P × Q × R

Ensure: Core tensor G ∈R
P×Q ×R and orthogonal factor matrices 

A ∈R
I×P , B ∈R

J×Q , and C ∈R
K×R

1: Initialize B, C;
2: repeat
3: Y ← X ×2 BT ×3 CT ;
4: A ← P leading left singular vectors of Y(1);
5: Y ← X ×1 AT ×3 CT ;
6: B ← Q leading left singular vectors of Y(2);
7: Y ← X ×1 AT ×2 BT ;
8: C ← R leading left singular vectors of Y(3);
9: G ← Y ×3 C;

10: until ||G|| ceases to increase or the maximum number of outer iterations 
is exceeded.

composition (SVD), a tensor is decomposed into a non-diagonal 
core tensor and factor matrices of each mode. While the factor ma-
trices represent the principal components of each mode, the core 
tensor represents the interactions between the different compo-
nents. Compared to PARAFAC, Tucker decomposition can express 
more complex interactions between factors. PARAFAC decomposi-
tion can be interpreted as a special case of Tucker decomposition 
where the core tensor is diagonal.

Tucker decomposition for 3-way tensor. The 3-way Tucker decom-
position of a tensor is as follows.

X ≈ [G;A,B,C] = G ×1 A ×2 B ×3 C

=
P∑

p=1

Q∑

q=1

R∑

r=1

gpqrap ◦ bq ◦ cr,

where G ∈ R
P×Q ×R is the core tensor, and A ∈ R

I×P , B ∈ R
J×Q , 

and C ∈ R
K×R are the factor matrices. Fig. 2 shows the Tucker de-

composition of a 3-way tensor X .

Tucker decomposition for N-way tensor. The N-way Tucker de-
composition of a tensor is as follows.

X ≈ [G;A(1),A(2), . . . ,A(N)] = G ×1 A(1) ×2 A(2) . . . ×N A(N),

where G ∈ R
J1× J2...× J N is the core tensor, and A(1) ∈ R

I1× J1 , A(2) ∈
R

I2× J2 , . . . , and A(N) ∈R
IN × J N are the factor matrices.

Tucker-ALS. Similar to PARAFAC, a well-known algorithm for com-
puting to Tucker decomposition is ALS, which alternately mini-
mizes each factor matrix after fixing all other factors. Algorithm 2
shows the standard SVD-based algorithm called Higher-Order Or-
thogonal Iteration (HOOI) for 3-way Tucker decomposition.

2.3. Streaming variants

Sun et al. [13] proposed Dynamic Tensor Analysis (DTA) method 
to analyze general high dimensional tensor data coming in a 
stream. DTA decomposes a tensor sequence (a subset of tensor 
stream) efficiently by updating variance matrices incrementally. 
They also proposed Streaming Tensor Analysis (STA), which ap-
proximates DTA, to further improve the speed. Another variant is 
a Window-based Tensor Analysis (WTA), by Sun et al. [7], whose 
purpose is to summarize a tensor stream. WTA is a window-based 
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tensor decomposition method which uses Frobenius norm as a di-
vergence function, and an alternating least square approach. WTA 
has two variations, independent-window tensor analysis (IW) and 
moving-window tensor analysis (MW). IW simply treats each ten-
sor window in a tensor stream independently, while MW has an 
efficient update scheme that utilizes the overlapping information 
of two consecutive tensor windows.

2.4. Scaling up

Tensor decomposition algorithms need to be carefully imple-
mented, since they require several multiplications of tensors and 
factors which could be prohibitive. For example, line 3 of Algo-
rithm 1, if naively implemented, would generate too much inter-
mediate data; this is known as the ‘intermediate data explosion’ 
problem. Bader et al. [14] proposed an efficient method for the 
computation by exploiting the characteristic of Kronecker multipli-
cation, Kang et al. [15,16] proposed distributed ALS algorithms for 
the computation using Hadoop, and Beutel et al. [17] proposed a 
distributed stochastic gradient descent algorithm using Hadoop.

3. Success stories

In this section, we describe success stories of using scalable ten-
sor mining for analyzing various real world data.

3.1. Higher order web links

Kolda et al. [18] proposed a method called Topical Hypertext In-
duced Topic Selection (TOPHITS) that extends the Kleinberg’s HITS 
algorithm [19]. The main contribution of the TOPHITS in the de-
termination of important web pages given a query is in the ap-
plication of anchor text information in addition to the hyperlink 
structure of the web. In HITS, every node has a hub score and an 
authority score. The two scores, in convergence, are equal to the 
singular vectors of the adjacency matrix computed using singular 
vector decomposition (SVD). The hub score and the authority score 
are then used to identify hubs and authoritative nodes of the given 
graph. One limitation of HITS is that the graph analyzed needs to 
be pre-filtered based on the query term. Moreover, even with the 
pre-filtering, some of the identified hubs and authoritative nodes 
may not be relevant to the original query due to “topic drift”, i.e. 
the highly ranked pages are not relevant to the original query topic 
[19]. Addition of the anchor text reduces both problems. However, 
the addition of anchor text (third dimension) into the hyperlink 
structure (first and second dimensions) requires a three-way tensor 
called the adjacency tensor for storing information. The adjacency 
tensor forms an adjacency matrix for each anchor text, only link-
ing nodes that are both linked through web structure and have 
the common anchor text. Similar to SVD in HITS, TOPHIS applies 
PARAFAC decomposition [20] on the adjacency tensor to extract 
topic, hub and authority scores of the nodes. The triple vectors 
〈topic(i), hub(i), authority(i)〉 of the ith principle factors of PARAFAC 
identify important nodes of a topic. In terms of scalability, TOPHITS 
is not originally designed to run on “big data”, but with greedy 
PARAFAC algorithm and careful selection of MATLAB storage for-
mat, it is able to analyze adjacency tensors as large as 50,000 by 
50,000 by 50,000 with 500,000 non-zero entries.

3.2. Knowledge base

Kang et al. [15] applied a large-scale PARAFAC algorithm to a 
knowledge base data called NELL [2], a real world knowledge base 
tensor containing (subject, object, verb) triples (e.g., ‘Beatles’ ‘Yes-
terday’, ‘sing’). The data contain 15 thousands of subjects/objects, 
29 thousands of verbs, and 77 millions of non-zeros. They per-
formed two tasks: discovering important concepts, and detecting 
contextual synonyms.

A concept in a knowledge base is a group of related subjects, 
objects, and verbs. Some examples of the discovered concepts from 
the NELL data include: 1) the “web protocol” concept which con-
sists of a set of subjects (internet, file, data), a set of objects (pro-
tocol, software, suite), and a set of verbs (stream, marketing), and 
2) the “health system” concept which consists of a set of subjects 
(health, child, home), a set of objects (provider, system), and a set 
of verbs (care, insurance, service).

The analyzed factors from the PARAFAC decomposition can be 
used to detect contextual synonyms, which are noun phrases oc-
curring in similar contexts. Each row of the factor matrix for the 
“subject” mode from the PARAFAC decomposition can be regarded 
as a lower-dimensional embedding of each subject, and thus a 
cosine similarity of two rows of the factor matrix can be used 
to detect contextual synonyms. Representative examples of syn-
onyms include: 1) “pollutants” is similar to “dioxin”, “sulfur diox-
ide”, “greenhouse gases”, “nitrogen oxide”, etc., and 2) “disabilities” 
is similar to “infections”, “dizziness”, “injuries”, etc.

3.3. Network traffic

Anomaly detection is especially important in analyzing network 
traffic data to detect malicious attacks. The following two works 
effectively find anomalies by spotting abnormal points, and their 
approaches can be applied in general anomaly detection problems, 
too.

Maruhashi et al. [9] proposed MultiAspectForensics that de-
tects subgraph patterns in a heterogeneous network and visualizes 
them. They did not examine the overall network but cleverly fig-
ured out distinctive points and extracted subgraph patterns from 
those points. They first drew attribute–eigenscore histogram from 
factor vectors, and found out spikes that indicate scores shared 
by many elements. A spike can be regarded as a trend or a pat-
tern in a subgraph. To clearly characterize those subgraph patterns, 
they defined two generalized patterns: a generalized star pattern 
and a generalized bipartite pattern. A generalized star pattern is 
composed of conterminous edges that differ only in one mode, 
and a generalized bipartite pattern is a dense bipartite structure 
where edges share exactly the same set of attribute. Using the 
defined patterns, they characterized abnormal patterns such as 
port-scanning or distributed denial of service (DDoS) attack, and 
successfully pointed out those patterns on real-world network traf-
fic dataset. They used LBNL network traffic log dataset which has 
4 modes (source IP, destination IP, port number, and a time tick in 
second), and 281K non-zero elements. They built a 3-mode tensor 
including source IP, destination IP, and port number from the LBNL 
dataset and applied MultiAspectForensics on it. The port-scanning 
attack belongs to a generalized star pattern because a suspicious 
source machine sends packets to a destination machine through a 
number of ports. The DDoS attack belongs to generalized bipartite 
pattern because many malicious hosts send huge amount of pack-
ets to a victim through many ports.

Another anomaly detection example with the network traffic 
log dataset is presented by Sun et al. [13]. With the proposed DTA 
method (Section 2.3), they narrowed down suspicious points by 
a multi-level screening process. Using reconstruction errors from 
DTA, they first detected abnormal tensors, and then found abnor-
mal modes among the abnormal tensors. Lastly, they found the 
abnormal dimensions in the abnormal modes. They successfully 
detected the onset of worm-like hierarchical scanning activities.
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3.4. DBLP

Analyzing DBLP bibliography dataset reveals interesting pat-
terns that can be useful for recommending related papers or re-
searchers for cooperation, and for tracking changes in research 
trend.

Kolda et al. [21] presented three data mining case-studies: clus-
tering, trend detection and anomaly detection. They showed a 
clustering example with DBLP dataset that has author–conference–
keyword (5K-1K-1K) triples. They applied a clustering algorithm on 
decomposed result factor matrices, and they successfully clustered 
conferences and authors based on their research areas: e.g., KDD, 
ICDM, and PAKDD are conferences related to groups for data min-
ing. In addition, related keywords are grouped: e.g., database, data, 
and query are relevant for the area of database.

Sun et al. [13] performed multi-way latent semantic index-
ing on DBLP dataset to find highly correlated modes. They con-
structed author–keyword–time (4K-3K-11) 3-way tensor from the 
DBLP dataset and performed latent semantic indexing. In latent 
semantic indexing, they found correlation within a mode and cor-
relations across modes. Correlation within a mode is found in a 
projection matrix where the entries with high values in a column 
represent important dimensions for the concept group. The core 
tensor indicates correlations across modes: the entry with high 
value in the core tensor means a high correlation of correspond-
ing concept groups. They especially focused on correlations across 
time to find changes in the research trend of a research group: 
they found that a research group changed its topics from ‘object-
oriented’ (1995) to stream (2004).

3.5. Sensor

Sun et al. [7] presented Multi-Aspect Correlation Analysis 
(MACA) that simultaneously finds correlations within and across 
all aspects. In MACA, they suggested meanings of decomposed re-
sult: each concept group represents a trend, and a weight from the 
core tensor corresponds to a global importance of a concept group. 
A score of an attribute indicates a participation of the attribute 
in a trend. They analyzed a sensor stream dataset containing 3 
modes (time, location and type). They found two important con-
cept groups based on the global importance, one represents the 
main trend and the other represents the major abnormal trend, 
and compared the normal main trend and the abnormal trend. In 
the concept group for main trend, there are daily activation pat-
terns over time which shows high activation during the day and 
low activation during the night. In the concept group for abnormal 
trend, there are abnormal daily activation patterns which show 
high activation during all the time, and abnormal spikes on loca-
tion pattern.

4. Research directions

In this section, we discuss promising future research directions 
in scalable tensor mining.

4.1. Scaling up

The area of scalable tensor mining is only in its beginning stage, 
and there are many opportunities in this area. A main opportunity 
is in developing distributed algorithms for scalable tensor mining; 
although there are several existing works [15,22], there are still 
many tensor algorithms whose distributed version needs to be de-
veloped: Tucker, DEDICOM, and nonnegative tensor factorizations 
are some of the examples.

Another opportunity is in sampling tensor data and perform-
ing an approximate computation, since the tensor data might be 
too large to handle even in distributed systems. Papalexakis et al. 
proposed a sampling based PARAFAC method [23,24], but there are 
many tensor algorithms which can benefit the sampling technique.

4.2. Coupled tensor analysis

Tensor decomposition can be more accurate if we use an extra 
information available in addition to the tensor data [25,17,26]. For 
example, decomposing a three-way tensor containing (user, item, 
time) information can be more accurate if we have an additional 
matrix of user and their features (age, location, etc.). In another 
example, a phone call tensor (caller, callee, time) can be more 
accurately decomposed if we have a social network information 
between the users. The main challenge is to make a model that ef-
fectively exploits both data, and developing efficient and scalable 
algorithms.

4.3. Applications

Despite the potential to help solve many data mining problems, 
tensors have not been applied widely. The main reasons are: 1) the 
lack of scalable algorithms, 2) setting the parameters (e.g., num-
ber of ranks) is difficult, 3) preprocessing data (e.g. applying log() 
to the values) that allow effective tensor mining is not straight-
forward, and 4) interpretation of the results often requires careful 
post-processing of the output. We expect that the progresses on 
the above problems will allow many more applications benefit-
ing from the tensor analysis; especially, applications involving time 
evolving data (e.g. social network over time, phone call network, 
sensor data, etc.) will benefit significantly.

5. Conclusion

In this paper, we describe algorithms, success stories, and fu-
ture directions of scalable tensor mining. Tensor mining is a gen-
eral tool since most multi-dimensional data are modeled as ten-
sors; we discussed many real world tensors as well as success 
stories (e.g., web analysis, knowledge base mining, network traf-
fic analysis, etc.). However, there still remain challenges and op-
portunities in scalable tensor mining, including scalability, using 
side information, and wide applications. We believe scalable ten-
sor mining has a great potential to help solve many data mining 
problems, and we just started to address the challenges.
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